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Effect of environment partitioning on the survival and coexistence of autocatalytic replicators
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The paradigm of cubic autocatalytic replicators with decay in coupled isothermal continuous stirred tank
reactors is selected as a model to study complex behavior in population dynamics of sexually reproducing
species in a heterogenous environment. It is shown that, even a setup with single species in two coupled
environments may have regions in parameter space that result in chaotic behavior, hence segregation in the
environment causes complexity in the system dynamics. Furthermore, partitioning is found to lead to emer-
gence phenomena exemplified by steady states not obtainable in the equivalent homogeneous system. These
phenomena are illustrated through case studies involving single or multiple species. Results show that the
coupled environments can host species, that would not survive should the coupling be removed.

DOI: 10.1103/PhysRevE.66.051916 PACS number~s!: 87.10.1e, 82.40.Bj, 89.60.2k
e
tin
h
s
th
e
bio
in
en
tio
al
u

en

la
e
on
d

es
ar
bi

ing
e

re

th
in

o

m.
on-

a
bi-

pu-
-
ies
gh

s,
her
t, as
r
rre-
lso

nce
on-
m-
o-
as

his

in-
s
n-

r-
le
ral

le.
to

n-
re

the
I. INTRODUCTION

Observed in their natural environment, most living sp
cies are found to exist in organized social settings reflec
various degrees of intermingling with other species. T
prospects of survival and coexistence of these specie
these environments is strongly impacted by the nature of
interactions between them and by the type of environm
they populate. For example, on the large scale of the
sphere, a variety of living organisms play a primary role
completing the natural cycles of carbon, nitrogen, oxyg
and numerous other elements, thus performing a func
that is critical to the sustenance of life itself. Even the sm
est living species, microorganisms, while interacting in n
merous ways with human activities, play a most promin
role in the completion of these elemental cycles. Rarely
any species found to live in total isolation, as mixed popu
tions of organisms are obviously the rule rather than the
ception in natural systems. The basic types of interacti
between species in these mixed populations are mainly
scribed as either~i! competition,~ii ! mutualism,~iii ! com-
mensalism,~iv! neutralism,~v! amensalism,~vi! predation or
~vii ! parasitism@1,2#. Whenever one or more of these typ
of interactions are present in a communal environment, v
ous facets of complex behavior are displayed by its inha
ants.

The theoretical study of the behavior of systems involv
the interaction of populations of multiple species is achiev
through the use of mathematical models based on diffe
paradigms of population biology@3–14#. The interested
reader may find a good elementary introduction to ma
ematical models of biology in the textbook by Edelste
Keshet@15#, and a thorough accounting of diverse aspects

*Electronic address: biroli@northwestern.edu
†Electronic address: parulekar@iit.edu
‡Electronic address: teymour@iit.edu
1063-651X/2002/66~5!/051916~19!/$20.00 66 0519
-
g
e
in
e

nt
-

,
n

l-
-
t

is
-
x-
s
e-

i-
t-

d
nt

-
-
f

mathematical biology in the textbook by Murray@16#.
In a recent article, Birol and Teymour@17# studied com-

petitive autocatalysis as a population biology paradig
Their analysis focused on multiple species populating a c
tinuous stirred tank reactor~CSTR! while competing for a
resourceR which is externally supplied to the reactor at
constant rate. In bacterial growth systems, experimental
furcation studies show that, feed limitation can cause po
lation cycles@18#. However, for sexually reproducing organ
isms, population cycles are generally attributed to spec
interactions, and are most popularly modeled throu
predator-prey dynamics@cf. Ref. @16##. In Ref. @17#, Birol
and Teymour showed that, like bacterial growth system
feed limitation can be the cause of population cycles, rat
than species interactions. They furthermore showed tha
many as (2n1121) steady states can be found wheneven
species are considered in the system, some of which co
spond to multiple species configurations. However, they a
provided proof that no steady state involving the coexiste
of multiple species was stable. This result, apparently in c
trast with the observation of biodiversity, has been co
monly found in a multitude of other homogeneous, auton
mous systems restricted to pure and simple competition
the single source of interaction among their inhabitants. T
competitive exclusionprinciple @19#, also known as the
plankton paradox@20#, raises questions about the susta
ability of natural ecology in view of the human activitie
~aided by great mobility and an unsettling appetite for co
sumption! that disturb the Earth’s ability to support biodive
sity @21#. However, it is not uncommon to observe multip
living species in apparent competitive coexistence in natu
situations, in spite of the competitive exclusion princip
Three major reasons are normally believed to contribute
this: ~i! the fact that the environment could be spatially no
uniform, ~ii ! the possibility that the external influences a
not time invariant, and~iii ! the possibility that one or more
types of interactions besides competition occur between
living species@22#.
©2002 The American Physical Society16-1
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The main objective of the present article is to explore
applicability of this hypothesis to the autocatalytic replica
system of Birol and Teymour@17#, but only in as much as
the ‘‘spatial homogeneity’’ assumption is concerned. To
complish this task, we test the effect of internal partitioni
on the behavior of the CSTR system, as we consider
coupled interacting CSTRs of the type illustrated in Fig.
The analysis will still utilize the cubic autocatalato
@3–7,17,23,24#,

R12P→
k

3P ~1!

with catalyst decay,

P→
kd

D ~2!

to model the population dynamics of any specific spec
living in this environment. Results will show that the stab
coexistence of two distinct species is provided by this pa
tioned environment under a range of operating conditio
thus supporting the conjecture that partial segregation of
environment leads to a higher potential for biodiversity.

This system of two interacting coupled CSTRs can
viewed as an aggregation of two subsystems, each of w
is equivalent to the original homogeneous CSTR. In this
gard, it provides an additional interesting facet, as it displ
the phenomenon ofemergencefeatured by complexity theory
@25#. Emergence, in this sense, refers to any situation
which a system displays a level of functionality that is n
possible for any of its subsystems when considered on t
own. The ability to support coexistent distinct species is
viously lacking from the homogeneous single CSTR syste
but emerges as a generic capability of the coupled rea
system. Analysis will further show that emergence can a
be observed even when a single species is considered in
system. Results will illustrate operating conditions und
which the mere existence of this species in the homogene
CSTR is impossible, yet that lead to thriving survival in t
same environment, when partitioning is introduced.

II. COMPETITIVE EXCLUSION

A. Biological and ecological aspects

The validity and applicability of the so-calledsurvival of
the fittestphenomenon and the associated competitive ex
sion principle have been the subject of debate among ec
gists. Several experimental and theoretical studies@cf. @26#
for references#, have shown that competition of two popul
tions for a single rate-limiting nutrient leads to extinction
one of the populations in a spatially uniform environme
that is not subject to temporal variations in external infl
ences. This pure and simple competition is the most wid
studied type of interaction between species populations
inhabit a common environment. Generally, these interacti
are broadly classified into two types, namely, indirect int
actions~exerted through the abiotic environment! or direct
interactions~involving direct physical contact of the interac
05191
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ing organisms! @27#. Regardless of whether a living specie
is unicellular or multicellular, its functioning and survival ar
dependent on processes occurring in each cell. The act
of each cell is a sum of thousands of molecular level che
cal reactions occurring inside the cell which lead to utiliz
tion of resources to generate building blocks of cellular m
terial and a host of other chemicals and are promoted b
large number of enzymes~biological catalysts!. The progress
of each reaction is strongly dependent on key variables s
as pressure, temperature and pH. The ecosystem at larg
any of its subsections~of whatever size, e.g., lakes, pond
and rivers of different sizes, seas, and oceans! are character-
ized by substantial spatial and temporal variations in th
key variables and other such variables. These spatial
temporal variations are responsible in part for the prese
tion of biodiversity. Humans have tried to mimic the fun
tioning of living species in natural environments in ‘‘con
trolled’’ settings in research laboratories and industr
complexes. Even in these settings, spatial and temp
variations in key variables influencing the functioning of li
ing species are increasingly common as the scale of op
tion is increased@28–30#.

As mentioned, the overwhelming majority of studies r
volving around thecompetitive exclusionprinciple involve
the cellular population dynamics of microbial mixed cu
tures. The rate of reproduction of cells in these cultures
often expressed according to kinetics of the Michae
Menten type ~which are analogous to the Langmui
Hinshelwood type rate expressions used for chemical c
lytic reactions! @31#. In these, the specific growth rate of th
cellular populationm is governed by the Monod equatio
@32#, which approaches a linear dependence on the reso
at low resource concentration and saturates to a maxim
growth ratemmax at higher levels. A plethora of variations o
this basic rate equation have been proposed in the litera
for rates of cell replication@see Refs.@1,33# and @34# for
several examples of these#. In some of these variations, th
order of reaction with respect to resources is less than u
and with respect to end-products is nonpositive~not surpris-
ing since synthesis of building blocks for cellular mater
and synthesis of end products are competing processe
concerns utilization of nutrient and energy sources within
living species!.

The apparent discrepancy between the common ob
vance of biodiversity in nature and the findings of studies
the dynamics of mixed cultures has long been believed to
attributable to spatial inhomogeneities and/or temporal va
tions in inputs. Both of these hypotheses have been c
firmed in further studies. Using the well-known Monod k
netics for describing growth of two competing microbi
populations, it has been established theoretically that the
competing populations can be sustained in a controlled la
ratory environment by periodic variations in feed conditio
to a continuous culture in a well mixed CSTR or by intr
ducing spatial inhomogeneity in the culture by consider
two or more CSTRs with two-way exchange of the cultu
between them@26,35–37#.
6-2
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EFFECT OF ENVIRONMENT PARTITIONING ON THE . . . PHYSICAL REVIEW E 66, 051916 ~2002!
Another major source of deviation from competitive e
clusion could be the type of interaction between the t
populations living in the environment. The closest type
pure and simple competition is commensalism, in which
commensal population benefits from a host population v
unidirectional interaction. Mixed cultures exhibiting com
mensalism with/without competition play an instrumen
role in ecology, in many commercial biological productio
processes, and in environmental cleanup and remedia
processes. Even in spatially uniform environments and un
time-invariant external influences, these populations exh
rich behavioral patterns@38,39#. Genetic engineering tech
niques have opened new avenues for enhanced producti
many valuable biochemicals, and discovery and synthes
new biochemicals. While the use of extrachromosomal D
vectors~such as plasmids! allows for overproduction of the
target vector-encoded metabolites, reversion of the recom
nant cells~host population! to vector-free cells~commensal
population! at cell division due to loss of all vector~e.g.,
plasmid! copies and the significant growth advantage that
commensal population has over the host population~compe-
tition for common nutrients! places limitations on sustaine
production of the target metabolites. Dominance of the
productive vector-free cells can usually be obviated by
plying a selection pressure, such as an antibiotic. Insertio
the antibiotic marker gene in the DNA vector renders imm
nity for recombinant cells from the antibiotic, while the a
tibiotic leads to death of or repression of growth of vect
free cells. Supplying appropriate amounts of antibio
ensures retention of recombinant population in the mix
culture. Theemergencephenomenon to be discussed later
this work has been demonstrated for these mixed culture
periodic need-based addition of antibiotic@40#. Another ex-
ample of mixed cultures~populations! is the healthy cells
and cancerous cells in animal tissue and blood. The can
ous cells~commensal population! are generated from health
cells~host population! and have significant growth advantag
over healthy cells~competition for common nutrients an
energy resources!. Survival of healthy cells then depends o
application of appropriate selection pressure~such as chemo
therapy and radiation treatment! to suppress as much as po
sible the growth~spreading! of cancerous cells. One shou
recognize that these last two examples of populations w
commensalistic interaction involve both direct and indire
interaction.

It should also be noted that any given species would
protected from competitive exclusion whenever it is be
continuously introduced into the system through its fe
stream, even if in trace amounts. Any such species wo
acquire robustness against extinction from the param
space of the system by virtue of the fact that it can alw
recover to healthy population levels when conditions
suitable @41,42#. This situation, for example, might be en
countered in the dynamics of fish populations in a body
water where periodic restocking is practiced by the Dep
ment of Natural Resources~DNR!.

B. Applicability to autocatalytic replicators

The present study utilizes a paradigm for population
namics based on the cubic autocatalator described by
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~1! and~2!. As noted by Birol and Teymour@17#, this is best
analogous to sexual reproduction in higher macroorganis
They also note however that the closely related quadr
autocatalysis is an alternative paradigm for asexual reprod
tion by cell division, since only 1 mole ofP participates in
the reaction instead of 2. It is worthy of note that their ana
sis proves that competitive exclusion is also found in hom
geneous, autonomous autocatalytic competition, thus indi
ing that this principle is not affected by the mode
replication in action. This proof was presented in Ref.@17#
for steady state coexistence and will be extended here
prove the lack of long term dynamic coexistence.

Theorem 1.: Impossibility of indefinite coexistence.In a
dynamical system ofN cubic autocatalytic species in a sing
homogeneous isothermal CSTR with constant resource f
more than one species cannot have a stable coexistence

Proof 1. Let us start by writing the model equations fo
the system. A material balance on the resource concentra
R and each of the species concentrationsPi yields

V
dR

dt8
52(

i 51

N

VkiRPi
21F~R02R!, ~3!

V
dPi

dt8
5VkiRPi

22~Vkdi1F !Pi , ~4!

where t8 represents the time,F is the volumetric flow rate,
R0 is the feed concentration of resource,ki and kdi are the
reproduction and death rates for speciesi, respectively. We
can modify the model equations, by definingr 5R/R0 , pi

5Pi /R0 , t5R0
2t8, f 5F/(VR0

2), anddi5kdi /R0
2, thus yield-

ing the dimensionless model equations,

dr

dt
52(

i 51

N

kirpi
21 f ~12r !, ~5!

dpi

dt
5kirpi

22~di1 f !pi . ~6!

We can use the model equations~5! and ~6! and the time
derivative ofr 1( i pi ,

d

dt S r 1(
i

pi D 5 f S 12r 2(
i

pi D 2(
i

dipi ~7!

to deduce the following constraints on concentrations:
~i! r (t).0 for all physically meaningful cases, and aft

the transients vanish, 0,r (t)<1.
~ii ! Again, after the transients,r (t)1( i pi(t)<1, which

implies ; i , pi(t),1.
~iii ! If pi(`)Þ0, thenpi(t).(di1 f )/ki .
From the last two constraints, we can write if 1,(di

1 f )/ki , thenpi(`)50.
Note that, considering the dynamics of the reciprocal

the species concentrations,si(t)51/pi(t), we obtain a set of
linear differential equations forsi(t), with r (t) being the
forcing function, given as
6-3
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BIROL, PARULEKAR, AND TEYMOUR PHYSICAL REVIEW E66, 051916 ~2002!
dsi

dt
52kir 1~di1 f !si . ~8!

Assume that we are investigating the system after the t
sients are settled, and allsi(t), i 51, . . . ,N, are finite,
which, following the above constraints, means

1,si~ t !,
ki

di1 f
, ; i . ~9!

Since coexistence steady states of this system are alw
unstable@17#, the system is to have a limit set.

Next, let us write the Jacobian matrix of the system in
(r ,s1 ,s2 , . . . ,sN) space,

J53
2(

i
ki /si

22 f 2k1r /s1
3 2k2r /s2

3 . . . 2kNr /sN
3

2k1 d11 f 0 . . . 0

2k2 0 d21 f . . . 0

A A A A

2kN 0 0 . . . dN1 f

4
~10!

along the trajectory, and find its eigenvalues to determine
orbital stability of this limit set.

The characteristic polynomial of the system can be w
ten in a compact form as

ulI 2Ju5(
i 51

N H Fl2

N
1lS ki

si
2

2
di

ND 1
2ki

2r

si
3

2~di1 f !S ki

si
2

1
f

ND G)
j Þ i

~l2dj2 f !J . ~11!

Note that, for a single-species system (N51), the stabil-
ity of the orbit depends on the choice of the system para
eters, as well as the initial conditions. Indeed, the sing
species system does have stable and unstable steady
and limit cycles@17#.

For an N-species system, withN.1, the characteristic
polynomial, PN11(l) defined in Eq.~11! is the sum ofN
polynomials,PN11

i (l), i 51, . . . ,N, each with at least (N
21) real-positive roots atl j5dj1 f with j Þ i . Without loss
of generality, assume thatdi ’s are sorted in decreasing orde
Investigating the sign ofPN11(l) at l15d11 f and l2
5d21 f ,

PN11~l1!5
2k1

2r

s1
3 )

iÞ1
~d12di !.0, ~12!

PN11~l2!5
2k2

2r

s2
3 )

iÞ2
~d22di !,0, ~13!

we conclude that,PN11(l) has a real-positive root in th
range (d21 f ,d11 f ). Following the same line of though
we can deduce that, there are (N21) real-positive roots in
05191
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the range (dN1 f ,d11 f ). This implies that, if the orbit de-
fines an attractor, we can compute the Lyapunov expon
along that, to find (N21) positive Lyapunov exponents
since there are at least (N21) mutually orthogonal direc-
tions along which close-by orbits diverge. Furthermore,
our system is orbiting on an attractor, it cannot have m
than (N21) positive Lyapunov exponents. The remainin
two should be composed of a zero and a negative Lyapu
exponent with a magnitude greater than the sum of the p
tive exponents. Since the conditions thus set for an attra
~if and when it exists! are valid for the whole paramete
space, this multiple species setup cannot have a stable
cycle, but only a chaotic attractor~a hyperchaotic one, for
N.2), if any. However, all established routes to chaos
quire a stable limit cycle to allow the transition@cf. Ref.
@43##. Also note that the absence of stable periodic attrac
in the multispecies system rules out the common signatu
of chaotic regimes of periodic windows and odd-period lim
cycles, as well as orbits of infinite period~homoclinic and
heteroclinic!.

We can visualize the dynamic behavior of the system
follows. We have seen that, everywhere on the orbit, th
are at least (N21) directions along which a small perturba
tion would grow locally exponentially in time. Such an eje
tion from the orbit would never make it back along a co
traction direction, but eventually defy the bounds set by
inequality ~9!, and the multispecies setup will collapse in
either a single-species setup or into total extinction. Ma
ematically speaking, we can implicitly integrate Eq.~8! for
speciesi and j to get

si~ t !

ki
2

sj~ t !

kj
5

si~0!

ki
e(di1 f )t2

sj~0!

kj
e(dj 1 f )t

2E
0

t

r ~t!~e(di1 f )(t2t)2e(dj 1 f )(t2t)!dt. ~14!

Note that, whendiÞdj , and t→`, the right hand side of
this equation will be dominated by the expressions of
species with larger death rate. For instance, ifdi.dj , then

lim
t→`

si~ t !

ki
2

sj~ t !

kj
5 lim

t→`

si~ t !

ki
. ~15!

The only possible way that this could happen is bysi→`,
hence the speciesi goes extinct.

In the special case ofdi5dj , we can write

si~ t !

ki
2

sj~ t !

kj
5S si~0!

ki
2

sj~0!

kj
De(di1 f )t ~16!

which would diverge to plus or minus infinity whe
si(0)/kiÞsj (0)/kj . If we consider an initial condition
si(0)/ki5sj (0)/kj in this special case, then the motion w
be trapped to thesi(t)/ki5sj (t)/kj manifold, which we have
shown above to be unstable. An example of the latter c
was presented in Ref.@17#.

As a result, multiple species cannot have stable coex
ence in this system. j
6-4
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FIG. 1. ~a! A homogeneous CSTR.~b! Equal
partitioning of the CSTR in~a! as two coupled
CSTRs.
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III. SINGLE SPECIES IN TWO CSTRs

Prior to our analysis of the two-species problem in S
IV, we will focus our study in this section on the behavior
a single species, when allowed to populate the coup
CSTR system. Variants of this problem have been studied
Kim and Hlavacek@44#, and Taylor and Kevrekidis@45,46#,
but were limited to the study of resonance phenomena, q
siperiodicity and chaotic dynamics resulting from the co
pling of oscillators. In this article we will analyze this single
species system with the aim of exploring the base u
which the parameter space of the two-species problem
built, and of presenting another example of emergent p
nomena in complex systems. The latter is illustrated by
ability of the coupled system to sustain the species un
conditions that result in total washout in the equivalent h
mogeneous CSTR. Although the focus of our analysis will
on the analysis of the steady state bifurcation structure,
will present dynamic results that exhibit chaotic flows pr
duced via the quasiperiodicity route, thus in agreement w
the findings of Taylor and Kevrekidis@45,46#.

The system of two isothermal CSTRs with constant fe
of resource of concentrationR0, and feed rateF, that host
populations of concentrationPi , i 51,2, which reproduce
sexually and decay with reactions of Eqs.~1! and~2!, respec-
tively, is illustrated in Fig. 1~b!. Let the concentration o
resource in reactori be shown byRi , and the interaction be
characterized by the flow rateG. If we operate the two reac
tors at a constant and equal volumeV, we can write the
model equations governing the resource and population
ance as

V
dRi

dt8
52VkRi Pi

21F~R02Ri !1G~Ri 82Ri !, ~17!

V
dPi

dt8
5VkRi Pi

22~F1Vkd!Pi1G~Pi 82Pi !, ~18!

where t8 represents time, andi 8 the otherreactor, i.e., ifi
51, then i 852 and vice versa. If we define the dime
sionless concentrationsr i5Ri /R0 and pi5Pi /R0, scale the
time t5t8R0

2, and define new parametersd5kd /R0
2, f

5F/(VR0
2) and g5G/(VR0

2), then the model equation
become

dri

dt
52kripi

21 f ~12r i !1g~r i 82r i !, ~19!
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dpi

dt
5kripi

22~ f 1d!pi1g~pi 82pi !. ~20!

Although in this setup, we may further scale time to get
of the reproduction ratek in favor of reducing redundancy
we will keep it, for the sake of notational consistency wi
Sec. IV, where we investigate the two-species case.

The coupling strength is characterized by the dimensi
less interaction flow rateg. In the absence of coupling,g
50, we naturally will have two isolated CSTRs equivale
to the original CSTR. At the other extreme asg→`, the fast
rate of interchange will tend to equalize the concentrations
R and P in both reactors, making them again indistinguis
able from a single large homogeneous CSTR@Fig. 1~a!#. The
feed ratef will be doubled for the latter, but so will be th
volume. The effect of the external feed ratef is different. If
we do not feed the system sufficiently, (f→0,) the popula-
tion will starve to death, as there will not be enough r
sources to consume for reproduction. At the other extrem
we feed the system too much, (f→`,) the residence time in
the system will tend to zero, and the species will not ha
any foothold in the system. Therefore, there is a finite reg
in the f parameter space, that would host a population
speciesP, subject to the conditionk/d.16 @17#.

A. Static complexity

Being a nonlinear system, a cubic autocatalator enj
multistability, and we will start this section by enumeratin
possible steady states, using the four equilibrium equatio

2kripi
21 f ~12r i !1g~r i 82r i !50, ~21!

kripi
22~ f 1d!pi1g~pi 82pi !50, ~22!

wherei 51,2 andi 8Þ i as before.
First of all, as in the single CSTR case, if no species

populating the environment,pi50, the fed resources will no
be consumed, andr i51. Thus the trivial steady state of thi
system is

SS05~r i51,pi50!. ~23!

It can be readily shown that this steady state is always sta
Next, let us consider the symmetric solutions for th

system of equations, wherep15p2 and r 15r 2, which are
clearly equivalent to the equilibrium equations of a sing
CSTR

2kripi
21 f ~12r i !50, ~24!
6-5



t

able

bi-

e-
y
ned
ed

d

BIROL, PARULEKAR, AND TEYMOUR PHYSICAL REVIEW E66, 051916 ~2002!
kripi
22~ f 1d!pi50. ~25!

In Ref. @17# the steady states of a single CSTR were found
be given by

SS15S r i5
11AD

2
,pi5

f ~12AD!

2~ f 1d!
D , ~26!

SS25S r i5
12AD

2
,pi5

f ~11AD!

2~ f 1d!
D , ~27!

where

D512
4~ f 1d!2

k f
. ~28!

Note that SS1 and SS2 exist only whenD.0, which corre-
sponds to a finite range inf P( f 2 , f 1), where
x

05191
o

f 65
1

8
~k28d6AkAk216d!, ~29!

and such a range exists only ifk/d.16. The analysis also
showed that SS1 is always unstable, and that SS2 is st
for f P( f H , f 1), where

f H5
2d

~k/d!1/2221~k/d24~k/d!1/2!1/2
~30!

is the feed rate at which the system experiences a Hopf
furcation. In the rangef P( f 2 , f H), SS2 is unstable.

Theorem 2: Conservation of stability structure for singl
CSTR steady states. The stability structure of the stead
states of each of two identical uncoupled CSTRs, as defi
by Eqs.~24! and ~25! is conserved, when these are coupl
by an interaction flow rate,g.

Proof 2. Note that the Jacobian matrix of the couple
CSTRs hosting a single species
A5F 2kp1
22 f 2g 22kr1p1 g 0

kp1
2 2kr1p12 f 2d2g 0 g

g 0 2kp2
22 f 2g 22kr2p2

0 g kp2
2 2kr2p22 f 2d2g

G ~31!
ral-
cal

ady
led
h at
wly
, if
and

or-
dy
tion
ac-
e
e

e
tes,
ix of
ady
ter
oft-
is in the form

A5FA12gI gI

gI A22gIG , ~32!

whereI is the 232 identity matrix, and

Ai5F2kpi
22 f 22kripi

kpi
2 2kripi2 f 2d

G ~33!

for the steady state values ofr i and pi . If the two CSTRs
have identical steady states,A15A2, and the Jacobian matri
A can be transformed to

Â5F A1 0

3gI A122gIG ~34!

using the similarity transformation,Â5S21AS with

S5F 2I 2I

2I I G . ~35!

Therefore the characteristic equation can be written as

ulI 2Au5ulI 2A1uu~l12g!I 2A1u50, ~36!

and will have right half plane eigenvalues, if and only ifA1
does. Note that, this property can easily be further gene
ized to multiple-species steady states in two identi
CSTRs. j

Up to here, we have shown that the single-CSTR ste
states and their stability structure are valid for the coup
system. Now let us consider two decoupled CSTRs, eac
one of its three steady states, and couple them, by slo
increasing the interaction flow rate. As we have shown
both start at the same steady state, nothing will change
the single-CSTR steady states will prevail for anyg. How-
ever, if they start from two different steady states, in acc
dance with the implicit function theorem, the new stea
state of the coupled system will be a continuous deforma
of the decoupled steady states in the limit of small inter
tion flow rates,g. As a result, additional steady states will b
observed. Eventually, asg exceeds a certain threshold, th
deformed steady states will disappear, since forlarge enough
g, we will approach the single-CSTR limit. Hence, in th
coupled system, we will have at most nine steady sta
three of them being the single-CSTR steady states, and s
them developing because of the coupling. The six new ste
states come from the roots of a sixth order polynomial. Af
manipulating the steady state equations using Maple s
ware@47#, we can express that polynomial inp1, with coef-
ficients
6-6
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FIG. 2. Steady states forr 1 in the coupled CSTRs withf 50.0077, hosting a species withk525 andd50.1. The bifurcation paramete
is the interaction flow rate,g. ~a! Nine steady states of the system system are marked.~b! A closeup of the bifurcation diagram showing SS2
SS21, and SS22.
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p1
6/1k3~ f 12g1d!~ f 212 f g1d f1dg!2,

p1
5/22 f k3~ f 12g!~ f 12g1d!~ f 212 f g1d f1dg!,

p1
4/1k2~ f 12g!~ f 12g1d!

~2 f 417 f 3g1 f 3k14 f 3d12 f 2d216 f 2g2

110f 2dg12 f 2kg13 f gd214g2d f1g2d2!,

p1
3/2 f k2~ f 12g!2~ f 12g1d!~4 f g1dg12 f 212d f !, ~37!

p1
2/1k f~ f 12g!2

~ f 415 f 3g13 f 3d1 f 2kg111f 2dg13 f 2d219 f 2g2

17 f gd21 f d312 f kg2111g2d f16 f g31d3g12g2d2),

p1
1/2 f 2kg~ f 12g!3~ f 12g1d!,

p1
0/1 f 2g2~ f 12g!3~ f 12g1d!.

Note the alternating sign of the coefficients ofp1
j , which is a

necessary condition forR$p1%.0 for all k, d, f, and g
PR 1.

Let us label the new steady states by SSab, wherea and
b denote the combination of decoupled steady states that
to it. For instance

SS015S r 151,p150;r 25
11AD

2
,p25

f ~12AD!

2~ f 1d!
D

~38!

at the branching point ofg50. Of course, when the system
is at a steady state SSab from the reference frame of on
reactor, it should be at the symmetric steady state SSba from
the reference frame of the other reactor since they are id
tical. Thus, the stability structure of the steady states is s
metric in the indicesa andb for this parametrization.

Example 1: Development of new steady states. Consider
the two CSTRs of Fig. 1 and a population of speciesP with
05191
ad

n-
-

reproduction ratek525 and death rated50.1, fed by a volu-
metric flow ratef 50.0077. The single CSTR steady stat
for this system are

SS005~r 151,p150;r 251,p250!, ~39!

SS115~r 150.9355,p150.0046;r 250.9355,p250.0046!,

~40!

SS225~r 150.0645,p150.0668;r 250.0645,p250.0668!.

~41!

Now, let us plot the bifurcation diagram for this system, u
ing the content software@48#, and the interaction flow rateg
as the bifurcation parameter. If we start with these ste
states and increase the interaction flow rateg we will observe
the horizontal lines in the bifurcation diagram of Fig. 2~a!.
However, e.g., initial conditions combining (r 1 ,p1) of SS0,
and (r 2 ,p2) of SS1, will yield the top curve emerging from
r 151 in the first CSTR, and the curve that emerges from
top of r 250.9355 in the second. Note that, as argued abo
the newly emerging steady states survive up to a cer
threshold value ofg, and disappear beyond that. There a
six new steady states due to coupling. The pair of ste
states below the liner 150.0645 are SS20 and SS21. Th
thick ~thin! curves correspond to stable~unstable! steady
states. For the parameter set of this example, SS2 is stab
well as SS0, and the new steady states SS02 and SS20
ings have regions of stability. All the other pairings have
least one of the CSTRs at an unstable steady state, an
new steady states are unstable too, but this does not im
that new steady states should inherit the stability struct
from their parent steady states. In Fig. 2~b!, we have shown
a closeup of the two steady states that emerge from SS2
clarify their stability structure.

Note that, in this projection of the bifurcation diagram
SS02, crosses over SS11, and the three steady states
SS10 and SS11 meet for a specific interaction flow rate.
though the first phenomenon is an artifact of projection,
latter is a result of the presence of a branching point, ag
50.0533.
6-7
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We may generalize the enumeration scheme for the n
ber of possible steady states tok mutually interacting CSTRs
with a single autocatalytic species. In each reaction, for
g→0 limit, there are three possible steady states, thusk

possible configurations. When we let a configuration
CSTRs interact, by increasing the interaction flow rate, ag
according to the implicit function theorem, all 3k distinct
steady states will survive for a range of interaction param
g, and then the bifurcation diagram will evolve into the thr
steady states of theg→` limit.

In this section, so far we argued the mechanism that
sults in new steady states due to coupling. Namely,
started with an asymmetric steady states configuration in
coupled CSTRs, and brought them together to observe
new steady states. It should be noted however that, cou
autocatalytic reactors have steady states that canno
reached through this scheme. That is, even if the decou
CSTRs do not have steady states for the operating pa
eters, the coupled system may. We can find those new st
states by using two-parameter continuation studies on
limit points and branching points of the asymmetric stea
states.

Example 2: Emergence. Consider the system of examp
1, operating at a feed rate off 50.000 977. Note that SS
and SS2 exist only forf P(0.001 65,6.0483). Therefore, th
decoupled system has the trivial steady state of extinc
only. However, the coupled system can have up to four n
trivial steady states, as shown in Fig. 3~a!. Figure 3 shows
the evolution of the bifurcation diagramr 1 versusg/ f , and
how those emerging steady states are related to the ‘‘as
metric steady states’’ setup. The emerging steady states
materialize as two points in the (r 1 ,g/ f ) plane and grow into
distinct isolas@Fig. 3~a!#. As f is increased, they first come i
contact, then intertwine@Fig. 3~b!# in this projection. Next
they elongate towardsg50, in anticipation of the limit of
sustainability in a single CSTR, the upper isola touching
trivial steady state atr 151, and the other one touchingr 1
50.5 @Fig. 3~c!# for f 50.001 65. At this value off, the isolas
are about to break at their touching point, then move apar
the steady states of the single-CSTR materialize in this s
@Fig. 3~d!#. By increasingf, the branching points of SS12
SS22, SS21 triplet and SS02, SS22, SS20 triplet grow clo
After they meet, SS02 pairs up with SS12, and SS20 w
SS21, and break from SS22@Fig. 3~e!#. Thus, two distinct
branching points evolve into two identical limit points. O
the other hand, SS01 and SS10 do not undergo any fu
mental changes throughout these transitions. Starting at
3~f!, stability starts developing on SS02 and SS20~shown by
darker lines!, where SS22 is also stable. As the gap betw
SS11 and SS22 grows wider, SS02, SS12 pair gets more
more confined between SS00 and SS11@Figs. 3~f! and 3~g!#.
When this gap starts shrinking again, by increasingf, the
asymmetric steady states survive higher and higher inte
tion flow rates@Fig. 3~h!#, until SS11 meets with SS22 a
r 150.5, for f 56.0483, where SS12 and SS21 become o

A cross section of this behavior is better illustrated by
bifurcation diagram of Fig. 4, where the bifurcation para
eter is the feed ratef and g is fixed at 0.002. The circula
isola represents the nontrivial steady states of the decou
05191
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system, and the amorphous isola is due to the coupling. If
label the steady states, atf 50.005 from top to bottom, they
are SS00, SS01, SS10, SS11, SS02, SS12, SS22, SS21
SS20. Note that aroundf .0.0075, SS02, SS12, SS21, an
SS20 disappear at the tips of the crescent, and do not ap
until f .0.3.

An important fact in this bifurcation diagram of Fig. 4, i
agreement with Figs. 3~a! and 3~b! is that, the domain of the
amorphous isola on thef-axis exceeds that of the circula
isola. Thus, coupling makes it possible for the species
have nontrivial steady states in the system, expanding
space of possible.

In an ecological analogy, consider, say a group of p
mates, living in an isolated environment with a scant flow
resources such that the group cannot survive under g
conditions. If the group, however divides into two and form
territorial tribes, allowing onlycontrolled interaction ~in
terms of population and resource interchange! they can sta-
bilize the unstable emergence steady states and surviv
that environment. In fact, such a territorial grouping is n
uncommon among many species, and the phenomenon i
plained in two schools of thought:the predation schooland
the bully school. The predation school claims that group liv
ing serves as predator control, both in the sense of ea
detection of the predator, and lower probability of being t
victim. In her study of black macaques on the Sulawesi
land of Indonesia, Kinnaird observes that, although
macaque population on the island does not have a profo
predator, they still live in social groups, and concludes t
the bully school of thought should be the correct reason
@49#. As suggested by our analysis, grouping may as well
the result of the underlying population dynamics.

Also, note that, not only do SS02 and SS20 have a ra
of f, where they represent stable steady states, with SS2
stable, but the system can sustain a higher concentrationP
as well in one of the CSTRs than it can have, if the CST
were decoupled. It may be possible to explain this emerge
of stability by local fluctuations of the asymmetric syste
that temporarily changes the effective volume and the r
dence time of each CSTR, thus bringing spatial inhomo
neity to the system.

Figure 5 illustrates how the bifurcation diagram ofr 1 ver-
susf evolves for changingg, further clarifying the conditions
for the emergence phenomenon. In Fig. 5~a! the bifurcation
diagram of the decoupled CSTRs is presented. It consist
the trivial solution line r 151 ~not shown!, and an isola
which has a region of stable steady states, indicated b
darker portion on the lower right-hand corner of the diagra
In Figs. 5~b!–5~l!, we deliberately omitted the isola of th
decoupled case, in order not to obscure the asymme
steady states. As we increase the interaction flow rateg the
asymmetric steady states emanate in the vicinity of SS
SS11, and SS22. We first observe an isola between SS00
SS11, and two nested isolas near the isola of SS11 and S
@Fig. 5~b!#. Note that, the new steady states SS02 and S
have a region of stability. Then, as the interaction flow rate
increased, the top isola formed by SS10 and SS02 gr
bigger while the other two new isolas get distorted@Fig.
5~c!#, and after the top isola touches the inner isolas@Fig.
6-8
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FIG. 3. Evolution of the bifurcation diagram ofr 1 versusg/ f in the coupled CSTRs for changingf @Eqs.~21! and~22!# hosting a species
with k525 andd50.1. Feed rate is~a! 0.000 977,~b! 0.001 25,~c! 0.001 65,~d! 0.002,~e! 0.005,~f! 0.05, ~g! 0.5, and~h! 5. The trivial
steady state wherer 151 is not shown. The horizontal lines stand for the steady states of the decoupled CSTRs which prevail in the
case.
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5~d!# the three merge to form a single closed curve@Fig.
5~e!#. That is when SS02 and SS20 develop another regio
stability located at the tips of the curve for lowerf values.
The stability regions on SS02 and SS20 enlarge the bou
aries of survival for the species, thus, we again encounte
emergence phenomenon. This new region of stability shri
with increasingg @Fig. 5~f!# and disappears@Fig. 5~g!# as the
closed curve evolves towards a crescentlike shape@Fig. 5~h!
and 5~i!#. Yet, even in Fig. 5~j!, we have a twist in the curve
which eventually disappears in Fig. 5~k!, at the cost of losing
05191
of

d-
an
s

the lower tip of the crescent. As we further increase the
teraction flow rate the closed curve shrinks further@Fig. 5~l!#,
then disappears. As we had argued earlier, beyond a ce
threshold interaction flow rate, the bifurcation diagram of t
coupled CSTRs is the same as that of the decoupled CS

The behavior of the limit points and the branching poin
of Figs. 3 and 5 can be summarized in a two-parameter c
tinuation diagram~Fig. 6!. The horizontal dark lines in the
figure are the limit points of the single-CSTR system, sho
ing the boundaries of the species isola. The dark curve
6-9
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FIG. 4. Steady states forr 1 in the coupled CSTRs withg
50.002, hosting a species withk525 andd50.1. The bifurcation
parameter isf.
05191
FIG. 6. Two parameter continuation diagram for the limit poin
and branching points for the CSTR hosting a species withk525
andd50.1. The dark lines show limit points and the light lines t
branching points.
only
FIG. 5. Evolution of the bifurcation diagramr 1 versusf in the coupled CSTRs for changingg @Eqs.~21! and~22!# hosting a species with
k525 andd50.1. Coupling feed rate is~a! 0, ~b! 0.0001,~c! 0.0002,~d! 0.0005,~e! 0.001,~f! 0.002,~g! 0.004,~h! 0.005,~i! 0.01,~j! 0.02,
~k! 0.05, and~l! 0.1. The trivial steady state atr 151 is not shown. Also for the sake of clarity, the steady states of the decoupled case
are shown in~a!.
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FIG. 7. Limit cycles emanating from the Hopf bifurcation points inr 1 versusf plane. The species in the environment have reproduc
and death ratesk525 andd50.1, respectively. Solid lines are steady states, while symbols represent the extrema of limit cycles.
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neath the lower horizontal line shows the evolution of t
limit points of the emergence isola of Figs. 3~a! and 3~b!.
Therefore, above the upper horizontal line~Region I!, and
below the lower horizontal line and the emergence lim
points ~Region II!, the system only has the trivial stead
state. Similarly, on the right-hand side of the right-mo
branching points curve~Region III!, the system has two
steady states on the single-CSTR isola, and the trivial ste
state. In other words, the static structure of the coupled
tem is equivalent to that of a single-CSTR system, if
operate the system in Regions I, II, or III.

B. Dynamic Complexity

The system described by Eqs.~19! and ~20! can have up
to three Hopf bifurcations in the states versus the feed fl
rate space. One of the Hopf bifurcations occurs on the s
metric steady state SS22 at the flow rate given by Eq.~30!,
since the bifurcation diagram of the symmetric steady sta
of the coupled CSTRs is identical to that of the single CST
The other two possible Hopf bifurcations occur on the asy
metric steady states SS02 and SS20, as they are the
possible new steady states that can develop from two st
steady states.
05191
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Example 3.: Stable steady states, limit cycles, and cha.
Let us investigate the system of Example 1, with an inter
tion flow rateg50.002. Fig. 7 shows the limit cycles comin
out of the three Hopf bifurcations. The limit cycles of Fi
7~a! correspond to those that develop from SS22, and
ones shown in Figs. 7~b! and 7~c! develop from SS02 and
SS20, respectively. Note that, the first bifurcation diagr
cannot have any period doubling, as it corresponds to
tonomous two-dimensional dynamics. Furthermore, num
cal studies showed that, the second~hence the third! bifurca-
tion diagram does not have any period doubling either. Y
the system still exhibits chaotic behavior reached throu
quasiperiodicity. For instance, if we couple two individual
oscillating CSTRs with a phase angle, the oscillations eit
lock into a single oscillation or result in chaos. If we pertu
the system around the locked oscillation or its strange att
tor, it may also converge to a stable steady state. In Fig
these three scenarios are shown on the (r 1 ,p1) and (r 1 ,r 2)
projections of the phase space. In the first one, after a l
transient regime, the two CSTRs get locked on the sing
CSTR limit cycle @Fig. 8~a!#. The second one is a strang
attractor@Fig. 8~b!#, and the third one shows the stable a
unstable steady states of the system, withd and3, respec-
tively.
r
n

FIG. 8. Coupling two oscillating CSTRs withf 50.006 74 andg50.002 either~a! results in an identical limit cycle in two reactors, o
~b! results in a chaotic motion, or~c! the system can go to one of its stable steady states shown withd. For comparison we have also show
the unstable steady states of the system with3.
6-11
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BIROL, PARULEKAR, AND TEYMOUR PHYSICAL REVIEW E66, 051916 ~2002!
Thus the system may have multiple stable steady state
stable limit cycle, and multiple strange attractors~the one
that is shown in Fig. 8~b! and its mirror symmetry! for the
same parameter set. Accordingly, it will be attracted to eit
one, depending on its initial conditions. Furthermore, it c
be transfered from one regime to another by small pertu
tions, due to the mingled nature of different basins of attr
tion.

Furthermore, although this species cannot have any l
cycle for f ,0.006 728 6, andg50.002, it does have strang
attractors untilf .0.0066. Hence, the species survives,living
on a strange attractor manifold, and would die out if t
coupling were removed. Figure 9 shows the average pop

FIG. 9. Species of Example 3 in two CSTRs with a feed r
f 50.006 65. Initially the CSTRs are coupled by an interaction fl
rateg50.002, and the interaction is removed att5300.
05191
, a

r
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la-

tion of p in the system, initially on a strange attractor for
feed rate f 50.006 65 and an interaction flow rateg
50.002. After the interaction flow is removed att5300, the
P concentrations in both CSTRs go to zero. This illustra
another type of emergence in the coupled system.

Example 4: Multiple limit cycles. Another dynamic rich-
ness of the system of a cubic autocatalytic species in
CSTRs is that, it can have a high order of limit cycle mul
plicity. For example, consider the species withk525 andd
50.1, living in two CSTRs that are fed with a flow ratef
50.006 729, and interaction flow rate isg50.0005. This
system has five stable limit cycles, as shown in Fig. 10.

In Fig. 10~a!, (r 1 ,p1) and (r 1 ,r 2) projections of the limit
cycles are shown with the stable (d) and unstable (3)
steady states of the system. The limit cycle shown by a
in (r 1 ,r 2) projection is the limit cycle that is inherited from
the single-CSTR dynamics. Figure 10~b! is the closeup of the
limit cycle, centered aroundr 250.9356 and is seen as a lin
in Fig. 10~a!, which shows that it does indeed oscillate inr 2,
as well. The same is valid for the limit cycle centered arou
r 150.9356, since we have a mirror symmetry between
two CSTRs of the system. Also, note that the limit cyc
shaped like a figure-eight in (r 1 ,r 2) projection is indeed two
limit cycles with a phase difference ofp on top of each
other, again due to mirror symmetry. Another interesti
property of this limit cycle is that, while it undergoes a sing
cycle in the (r 1 ,r 2) projection, it makes two identical cycle
in the (r 1 ,p1) projection.

e

FIG. 10. Multiple stable limit cycles and steady states of the system of example 4.
6-12
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TABLE I. 49 steady states of a system of two CSTRs with two speciesP andQ of example 5 and their
stability. Steady states are grouped in four sets: total extinction~1!, P only ~2–9!, Q only ~10–17!, and
coexistence~18–49!.

CSTR 1 CSTR 2
SS r 1 p1 q1 r 2 p2 q2 Stability

1 1.0003100 0.0003100 0.0003100 1.0003100 0.0003100 0.0003100 Stable
2 9.49031021 4.63631023 0.0003100 9.49031021 4.63631023 0.0003100 Unstable
3 5.10031022 8.62731022 0.0003100 5.10031022 8.62731022 0.0003100 Stable
4 9.52631021 4.66131023 0.0003100 9.95731021 4.23931025 0.0003100 Unstable
5 4.74331022 9.36131022 0.0003100 9.11031021 1.08531023 0.0003100 Stable
6 4.75431022 9.33631022 0.0003100 8.81931021 3.96731023 0.0003100 Unstable
7 9.95731021 4.23931025 0.0003100 9.52631021 4.66131023 0.0003100 Unstable
8 8.81931021 3.96731023 0.0003100 4.75431022 9.33631022 0.0003100 Unstable
9 9.11031021 1.08531023 0.0003100 4.74331022 9.36131022 0.0003100 Stable
10 8.36331021 0.0003100 4.42431022 8.36331021 0.0003100 4.42431022 Unstable
11 1.63731021 0.0003100 2.26031021 1.63731021 0.0003100 2.26031021 Stable
12 8.43231021 0.0003100 4.50331022 9.85631021 0.0003100 1.22431023 Unstable
13 1.56831021 0.0003100 2.42131021 9.18231021 0.0003100 7.86831023 Stable
14 1.57831021 0.0003100 2.39831021 8.08931021 0.0003100 3.94731022 Unstable
15 9.85631021 0.0003100 1.22431023 8.43231021 0.0003100 4.50331022 Unstable
16 8.08931021 0.0003100 3.94731022 1.57831021 0.0003100 2.39831021 Unstable
17 9.18231021 0.0003100 7.86831023 1.56831021 0.0003100 2.42131021 Stable
18 7.54431021 5.83331023 4.90531022 7.54431021 5.83331023 4.90531022 Unstable
19 2.45631021 1.79131022 1.50631021 2.45631021 1.79131022 1.50631021 Unstable
20 9.37331021 4.73631023 1.23031023 8.37831021 4.30231025 4.53231022 Unstable
21 9.78931021 5.25931025 1.34531023 7.69531021 5.76931023 4.93531022 Unstable
22 9.31431021 4.71531023 1.35231023 7.64631021 5.76431023 4.96731022 Unstable
23 4.83031022 9.19231022 1.36631023 7.33031021 9.89831024 5.18031022 Unstable
24 4.85831022 9.13531022 1.49831023 6.68331021 5.68131023 5.68231022 Unstable
25 5.06131022 8.75931022 3.80231023 2.64231021 1.59831022 1.43831021 Unstable
26 8.81031021 4.86231023 4.85331023 2.32031021 1.90931022 1.63731021 Unstable
27 9.27931021 1.80331024 4.92831023 2.30531021 1.92631022 1.64731021 Unstable
28 5.12631022 8.66131022 5.64731023 1.78331021 8.06431024 2.13031021 Stable
29 8.67131021 5.12031023 7.67131023 1.57931021 4.62031025 2.40531021 Unstable
30 7.96531021 1.77531024 4.29731022 2.32731021 1.90831022 1.62231021 Unstable
31 8.28931021 5.30631025 4.45231022 7.61431021 5.83131023 4.87131022 Unstable
32 7.28631021 6.09431023 4.49031022 1.59331021 5.50131025 2.37431021 Unstable
33 8.37831021 4.30231025 4.53231022 9.37331021 4.73631023 1.23031023 Unstable
34 7.19931021 5.99331023 4.81531022 2.34931021 1.88531022 1.60531021 Unstable
35 7.61431021 5.83131023 4.87131022 8.28931021 5.30631025 4.45231022 Unstable
36 7.69531021 5.76931023 4.93531022 9.78931021 5.25931025 1.34531023 Unstable
37 7.64631021 5.76431023 4.96731022 9.31431021 4.71531023 1.35231023 Unstable
38 7.33031021 9.89831024 5.18031022 4.83031022 9.19231022 1.36631023 Unstable
39 6.68331021 5.68131023 5.68231022 4.85831022 9.13531022 1.49831023 Unstable
40 2.64231021 1.59831022 1.43831021 5.06131022 8.75931022 3.80231023 Unstable
41 2.43831021 1.82131022 1.49731021 1.65531021 1.65131024 2.25631021 Unstable
42 2.34931021 1.88531022 1.60531021 7.19931021 5.99331023 4.81531022 Unstable
43 2.32731021 1.90831022 1.62231021 7.96531021 1.77531024 4.29731022 Unstable
44 2.32031021 1.90931022 1.63731021 8.81031021 4.86231023 4.85331023 Unstable
45 2.30531021 1.92631022 1.64731021 9.27931021 1.80331024 4.92831023 Unstable
46 1.78331021 8.06431024 2.13031021 5.12631022 8.66131022 5.64731023 Stable
47 1.65531021 1.65131024 2.25631021 2.43831021 1.82131022 1.49731021 Unstable
48 1.59331021 5.50131025 2.37431021 7.28631021 6.09431023 4.49031022 Unstable
49 1.57931021 4.62031025 2.40531021 8.67131021 5.12031023 7.67131023 Unstable
051916-13



le
.
n

ults
lid.
dy
ach

wo

ex-

of
ven
ly

will
me
es

-

-
s-
rac-

ow
on

-
xity
m
To

-

wn
nts
lu-

the
the

wo

ach
is

in
-

the

.
xist-

p

fo

BIROL, PARULEKAR, AND TEYMOUR PHYSICAL REVIEW E66, 051916 ~2002!
IV. COEXISTENCE OF TWO SPECIES IN THE
PARTITIONED ENVIRONMENT

Now, let us take a step further, and consider the coup
CSTRs when two speciesP andQ are allowed to populate it
The dimensionless model equations for this case are give

dri

dt
52kpr ipi

22kqr iqi
21 f ~12r i !1g~r i 82r i !, ~42!

dpi

dt
5kpr ipi

22~ f 1dp!pi1g~pi 82pi !, ~43!

FIG. 11. Bifurcation diagram of the two species case of exam
5 on ~a! r 1 versusf, ~b! p1 versusf and~c! q1 versusf planes. Note
that, the latter two are drawn on a log-log scale to show detail
low level species concentrations.
05191
d

by

dqi

dt
5kqr iqi

22~ f 1dq!qi1g~qi 82qi !, ~44!

for i 51,2, with iÞ i 8, and wherekp (kq) anddp (dq) are the
dimensionless reproduction and death rates of speciesP (Q),
respectively. Note that, for the two species system, the res
of the single species case, investigated so far, are all va
Namely, we still have the total extinction as a stable stea
state, and there are eight additional steady states for e
species. Also note that, in a single CSTR setup with t
species@17# we have seven possible steady states~one for
total extinction, two for each species representing partial
tinction, and two for their coexistence!. Again, from the im-
plicit function theorem, we can argue that, if we start each
the two totally segregated CSTRs at one of those se
steady states, then bring the two into interaction, by slow
increasing the interaction flow rate, the steady states
evolve continuously into new steady states. Thus, for so
range ofgP(0,gmax), we may observe up to 49 steady stat
for this system, as illustrated by the following example.

Example 5: The steady state structure. Let us consider
speciesP with kp525 anddp50.1 as in the previous sec
tions, and let the second speciesQ be defined bykq51 and
dq50.027. For a feed flow rate off 50.01, and an interac
tion flow rate ofg50.001, 49 distinct steady states are po
sible. These have been computed and their stability cha
teristics determined as shown in Table I.

If we continue these 49 steady states using the feed fl
rate f as our bifurcation parameter, we obtain the bifurcati
diagram of Fig. 11. When compared with theP-only bifur-
cation diagram of Fig. 4, Fig. 11~a! reveals that the introduc
tion of the second species increases the level of comple
of the bifurcation diagram considerably, as the maximu
steady state multiplicity has increased from nine to 49.
better show the details of this, we have plotted the (f ,p1)
and (f ,q1) projections of the bifurcation diagram on a log
log scale@Figs. 11~b! and 11~c!, respectively#. Notice that,
the trivial stable steady state of total extinction is not sho
in any of the projections. For added clarity, Fig. 12 prese
a breakup of this bifurcation diagram into three sets of so
tion curves, those supportingP only, those supportingQ
only, and those where existence of bothP andQ is observed.
Note that, the (f ,r 1) plane projection of theP-only steady
states are identical to those of Fig. 4, and that those of
Q-only steady states are similar. We can clearly see from
coexistence steady states shown in Figs. 12~b!, 12~e!, and
12~h! that the two-CSTR system is capable of hosting t
species on multiple stable steady states~for example steady
states 28 and 46 of Table I, which are mirror images of e
other!. Another interesting point we observe in Fig. 12
that, while the coexistence steady states form a bundle
( f ,q1) projection@Fig. 12~h!#, they are grouped in three dis
joint sets in (f ,p1) projection@Fig. 12~e!#.

Similar to the single species analysis, we can study
effect of the interaction flow rate,g, on the bifurcation struc-
ture. If we fix the feed flow rate atf 50.01, we can use the
interaction flow rateg to plot the bifurcation diagram of Fig
13. We can see that the system has a pair of stable coe

le

r
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FIG. 12. Breakup of the bifurcation diagram of the two species case of example 5.~a!, ~b!, and~c! show anr 1 versusf projection,~d!,
~e!, and ~f! show ap1 versusf projection,~g!, ~h!, and ~i! show aq1 versusf projection ofP-only, P and Q, andQ-only steady states
respectively.
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ence steady states in the rangegP(0,0.0045), and roughly
afterg50.054 the coupled CSTRs have a steady state st
ture identical to that of a single CSTR.

Example 6: Two species oscillation. Next, we consider
some numerical experiments that explore oscillatory c
pling in this system. If we totally segregate the system of
previous example and feed it with a flow ratef 50.007, un-
der certain conditions, we can arrange a setup where the
CSTR has an oscillating speciesP, and the second CSTR ha
an oscillating speciesQ @Fig. 14~a!#. Next, we can couple the
two CSTRs with certain interaction flow rate and observe
effect of coupling. Depending on the timing and the stren
of coupling, the system can go to a two species quasiperi
oscillation@Fig. 14~b!#; to a setup where one of the CSTRs
dominated by an oscillatingP, and Q is gone extinct@Fig.
14~c!#; to a setup where one of the CSTRs is dominated bP
at steady state, andQ is gone extinct@Fig. 14~d!#; to a setup
where both of the CSTRs are dominated by an oscillatingP,
and Q is gone extinct@Fig. 14~e!#; or to a total extinction
steady state@Fig. 14~f!#. Note that, the oscillations shown i
Fig. 14~b! are actually quasiperiodic oscillations, which
evident from the concentration fluctuations ofp1 and q2,
shown in Fig. 15. Also note that, the last two cases show
Figs. 14~e! and 14~f! have the same interaction flow rate, y
exhibit different type of final behavior, due to the timing
the coupling.
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Example 7: Two species chaos. Numerical studies per-
formed suggest that, two species can coexist in two ident
CSTRs either at a steady state, or on a quasiperiodic at
tor. Although theoretically, it may still be possible to susta
coexistence on a chaotic attractor in the two identical CST
setup studied, our numerical analysis could not locate s
behavior in the range of parameters considered. To push
quasiperiodic regime into a full-fledged chaos, we neede
either relax the identical CSTRs condition, or increase
level of partitioning by considering a three-CSTR setup.

To that end, let us first consider three CSTRs hosting t
species,P with kp524 anddp50.1, andQ with kq524.5
and dq50.099. If we operate the system of totally segr
gated CSTRs with a feed flow ratef 50.007, both of the
species will have stable limit cycle regimes. Now, we st
the system with seeding the first CSTR withQ, and the sec-
ond and the third withP. After they reach their stable limi
cycle, if we connect the three with an interaction flow ra
g50.0005, in the resulting system we will have the fir
CSTR dominated byQ, and other two dominated byP, and
the limit cycle of the species will evolve into a strange a
tractor. Figure 16 shows the concentration of the domin
species versus the resource concentration in each tank.

Alternatively, let us relax the condition of identica
CSTRs, and consider a two-CSTR system with the sec
CSTR having a volume that is twice that of the first one, a
6-15
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is fed with a flow rate that is twice that of the first. If we se
this system with the same speciesP and Q as above, and
operate the system withf 50.007 andg50.0005, in operat-
ing conditions of Fig. 17, the first CSTR will be dominate
by Q, and other one dominated byP. Thus, the two specie
will again be able to coexist on a strange attractor.

V. CONCLUSIONS

This article analyzes the effect of environmental partitio
ing on the survival fate of multiple cubic autocatalytic rep
cators that inhabit this environment, and compete for a co
mon resource. The partitioned environment was modele
two coupled CSTRs. Analysis showed that the steady st
of the decoupled system, which are also present in

FIG. 13. Bifurcation diagram of the two species case of exam
5, on r 1 versusg plane.~a! P only, ~b! Q only and~c! coexistence
steady states.
05191
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coupled case, conserve their stability structure after coupl
For the case of a single species, we investigated the me
nism by which new steady states develop in the coup
system. A continuation study on the new steady states
vealed that, the coupled system may have survival ste
states, where the decoupled system cannot. Thus, we wit
emergence of new~albeit unstable! steady states due to th
complexity offered by coupling. Another encounter wi
emergence phenomena occurred in the parameter ra
where the decoupled system did not have any stable surv
steady states. The coupled system, this time, expanded
range of stability for the survival of the species. In one of t
environments, we had high concentration of the species—
fact, higher than the~unstable! steady states of the decouple
system can reach—and in the other we had a lower con
tration. A third kind of emergence phenomenon occurr
next to the limit cycle regime of the decoupled syste
which is also valid for the coupled case. When the limit cyc
of the decoupled system ceased to exist, the coupled sy
enjoyed a strange attractor. Once more, the species surv
where it would not, should the coupling be removed.

Theoretical and experimental studies suggest that, co
istence of pure and simple competitors in a homogene
environment with uniform feed flow rate is not possible. W
have shown that the autocatalytic replicators setup is
agreement with this, so called, competitive exclusion pr
ciple. One remedy of this is to partition the environment.
this work we have shown the mathematical reasoning of w
and how partitioning brings the possibility of coexistenc
We also conjecture that the number of steady states of m
tiple species living in a partitioned environment increas
exponentially both with the number of species and the nu
ber of partitions. Results demonstrate that, stable coexiste
of two species is impossible in this environment, in a mu
tude of configurations. These include steady state, perio
and quasiperiodic attractors as well as chaotic attractors

The two-CSTR system considered here is an example
two well-mixed subsystems interconnected via two-way
change of living species~autocatalysts! P andQ and nutrient
resourceR. With resource introduced via feed devoid of a
tocatalysts and loss of both autocatalysts and resource via
effluent in each subsystem, the two-reactor system is re
sentative of the industrial scale biological production p
cesses and biological waste treatment processes. The ra
exchange ofP, Q, and R between the two subsystems a
proportional to the differences in concentrations of the
spective species in the two subsystems and are there
representative of diffusive transport between the subsyste
Segregation of a system into two or more subsystems ba
on spatial inhomogeneity, with exchange of one or more s
cies occurring between the subsystems by diffusion, has b
shown to lead to coexistence of two competing living spec
under conditions where such coexistence would not
permissible if the system were spatially homogeneo
@16,26,35–37#. It is well known that diffusive transport en
ables coexistence of competing living species both in mec
nochemical systems~such as that considered here! and eco-
logical systems@16#.

Although the focus of this article is on a two-CSTR sy

le
6-16
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FIG. 14. ~a! Two separate oscillating CSTRs with speciesP in one and speciesQ in the other, can go to~b! a coupled oscillation for
g50.000 02,~c! a P-dominated oscillation in one reactor withQ gone extinct forg50.0002,~d! a P-dominated steady state in one react
with Q gone extinct forg50.002, ~e! a P dominated identical oscillation in both reactors withQ gone extinct forg50.04, and~f! a total
death forg50.04.

FIG. 15. Concentrations of~a! P in the first
CSTR, and~b! Q in the second CSTR versus th
resource concentration in the respective CS
for the two-species oscillation of Fig. 14~b!.

FIG. 16. Concentrations of~a! Q in the first CSTR,~b! P in the second CSTR, and~c! P in the third CSTR, versus the resourc
concentration in the respective tank for the three CSTRs of example 7.
051916-17
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FIG. 17. Concentrations of~a! Q in the first
CSTR, and~b! P in the second CSTR, versus th
resource concentration in the respective tank
the two CSTRs of example 7.
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tem, the approach undertaken here can be readily extend
several interconnected~via diffusive transport! CSTRs,
thereby allowing one to mimic ecological systems as co
posites of several discrete reaction-diffusion systems.
extension would of course involve modification of certa
terms in Eqs.~3!–~6! and Eqs.~42!–~44!, which are reflec-
tive of reactors operated by humans in industrial settings.
example, the source term forR, in general, will not be spa
tially uniform, and may involve temporal variations. In th
case of ecological systems, each subsystem can be r
sented by a well-mixed reactor accounting for reproduct
and death of each living species, resource utilization,
source generation~supply! and diffusive exchange of living
species and resource between subsystems. One can
that, the terms reflecting the loss of resource and populat
via reactor effluent would be absent, with few exceptions
representation of ecological systems. An example excep
is description of events in large lakes and rivers. These
tems can be subdivided into subsystems based on variatio
flow rate with depth. The subsystem comprised of sectio
the bottom would essentially be stagnant~thus f bottom50),
while the subsystem comprised of the top section near
air-water interface would have the highest flow rate (f top
.0). The mathematical representation in this situat
-

u

ull
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should account for loss of resource and populations via s
system effluent with distinct flow rates in different su
systems.

Also note that, in the mathematical description of the s
tem, death process, characterized bydi for speciesi, always
appears in an additive form with the physical loss of spec
characterized byf. Thus, one can in principle lump the tw
processes intoDi5di1 f , and reformulate the model equa
tions using parameterski , Di , andf, instead ofki , di , andf.
Although doing so would impose certain restrictions on t
magnitudes of the individual parameters, the analyses
sented in this work will stay intact in this constrained para
eter space.

As a result, the cubic autocatalytic replicators in par
tioned environments scheme is apt for the investigation
mathematical ecologies. Even a single species in
coupled environments introduces the type of complex beh
ior we expect to see in the natural and artificial ecologies
is further demonstrated that, the most important effect
environment partitioning, as far as mathematical ecolog
are concerned, is that, it enables stable static and dyna
coexistence of multiple autocatalytic replicators. Moreov
it is possible to relax the assumption of identical CSTRs, a
preliminary results suggest increasing complexity by, e
allowing different flow rates for different CSTRs.
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